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Abstract

Empirical industrial organization studies document frequent instances of over-competition
and market volatility. This paper provides a new perspective on this phenomenon by
introducing a psychological motive, the desire to win, defined as an extra utility received
when an individual’s profit exceeds that of rivals. I show that under plausible conditions,
no pure-strategy Nash equilibrium exists. Additionally, in a Cournot setting, when the
desire to win is moderate, no pure-strategy equilibrium arises; when it is large, the Cournot
outcome coincides with the Bertrand outcome, and the mixed strategy equilibrium still leads
to overproduction. Then, I estimate the desire to win coefficient by structural estimation
using maximum likelihood on experimental data. The results have practical implications for
incentive design and policy, such as rank-based bonuses that offer a direct incentive to adjust
competitive intensity and market volatility to maximize social welfare or firm productivity.
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1 Introduction

A growing empirical literature in industrial organization documents that market equilibria

sometimes diverge from theoretical predictions, such as excessive entry and over-competition,

as well as market volatility. Hsieh and Moretti (2003) showed that fixed commissions in real

estate induced socially excessive entry of brokers, with little improvement in matching efficiency.

Similar phenomena arose in healthcare: Kessler and McClellan (2000) found that increased

hospital competition in the 1980s led to higher expenditures without improving patient outcomes.

In transportation markets, Mayer and Sinai (2003) documented that airlines overscheduled

flights at congested hubs, creating delays that individual carriers did not internalize, and Holmes

(2011) found that Wal-Mart’s dense rollout strategy led to costly cannibalization across outlets.

Overinvestment has also emerged in dynamic settings: Greenwood and Hanson (2015) showed

that shipping firms engaged in boom-time overbuilding of fleets, followed by predictably low

subsequent returns. Beyond overinvestment and overproduction, overadvertising is likewise

well documented. For example, Sinkinson and Starc (2019) demonstrated that pharmaceutical

advertising primarily reallocated demand across brands without generating clear increased profits.

As for the phenomenon of excessive market volatility, Eichenbaum et al. (2011) showed that

actual transaction prices change very often, even when reference prices and measured costs are

inert, implying substantial short-run volatility. In online electronics, Ellison and Ellison (2009)

documented obfuscation and rapid repricing around price search engines that sustain sharp,

frequent price movements. In secondary ticket markets, prices typically fall 40 percent as events

approach, producing pronounced within-market volatility consistent with dynamic pricing under

competition (Sweeting, 2012). Taken together, these studies provide abundant empirical evidence

across different industries that competition exceeds the efficient level for producers and that

market volatility is also excessively high.

While the evidence shows that excessive competition is common, current theory does not fully

explain why market participants continue to engage in such wasteful rivalries. One well-known

explanation is the sunk cost channel: once firms have already spent money that cannot be

2



recovered, they may keep competing even when quitting would be better. In incentivized penny

auction settings, Augenblick (2016) demonstrated that earlier bids lead players to continue bidding

in aggressive ways that lead to profit loss. But sunk cost effects depend on context: a large

field experiment finds that higher payments mostly affect who participates and does not show a

clear sunk cost effect (Ashraf et al., 2010). Another explanation points to information-driven

congestion: when firms cannot fully observe or react to rivals’ simultaneous choices, they rely on

shared signals or simple rules of thumb, which can lead to clustering, contests, and too much

investment compared to what would be socially optimal. Theory highlights welfare losses from

public signals in market games, greater waste in large contests, and crowding of research directions

(Hopenhayn & Squintani, 2021; Olszewski & Siegel, 2016). Still, these explanations do not solve

the puzzle that even in markets with low fixed costs and high transparency, over-competition

remains. For example, modern electronic equity markets show wasteful speed races despite almost

complete price transparency (Budish et al., 2015).

Motivated by this gap, this paper offers a psychology-based explanation: a non-monetary

“desire to win” that helps explain why firms compete too aggressively and why the market

is excessively volatile. Psychological research provides strong evidence that individuals often

exhibit this motive, which can lead them to prioritize relative success over absolute outcomes.

Classic work on social value orientation by Messick and McClintock (1968) demonstrated that

many individuals displayed a competitive preference structure, willing to sacrifice absolute gains

to outperform others. Subsequent psychometric advances, such as the Competitiveness Index

developed by Houston et al. (2002) and the Hypercompetitive Attitude Scale of Ryckman et al.

(1990), confirmed the existence of stable individual differences in the motivation to win at any

cost. In sport psychology, Gill and Deeter (1988) distinguished between win orientation and

goal orientation, showing that the drive to defeat opponents is separable from the motive of

self-improvement, while Vealey (1986) further conceptualized competitive orientation as the lens

through which individuals define success. Experimental work also highlighted how the desire to

win can distort decision making: Ku et al. (2005) documented “auction fever,” where participants

escalated bids beyond item value to secure victory, and Malhotra (2010) showed how rivalry and
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time pressure amplified a win goal over payoff maximization. Relatedly, Kilduff et al. (2010)

demonstrated that rivalry heightened motivation and effort independent of economic incentives,

while Garcia and Tor (2009) provided evidence that performance intensified as competitive set

size changed, consistent with a socially comparative drive to win. These findings collectively

establish that the urge to win is a fundamental psychological motive with significant behavioral

implications, and they suggest that the over-competition observed in markets may in part be

rooted in this deeper psychological drive.

Since over-competition directly affects social welfare and economic growth, it is important

to study how the desire to win influences over-competition. Existing literature shows both the

benefits and the costs of intense rivalry. On the one hand, several studies highlight positive

effects: Petrin (2002) showed that the introduction of the minivan generated large consumer

welfare gains, and Goolsbee and Petrin (2004) found that competition between satellite and

cable television significantly reduced prices and expanded consumer choice. On the other hand, a

number of papers identified important inefficiencies when competition went too far. For example,

Aghion et al. (2005) documented an inverted U relationship between product market competition

and innovation, with moderate rivalry spurring firms to innovate. In addition, Hsieh and Moretti

(2003) demonstrated that free entry of real estate agents led to socially excessive duplication with

little efficiency gain. In healthcare, Kessler and McClellan (2000) provided evidence of a costly

“medical arms race,” where hospital competition raised expenditures without improving outcomes.

In transportation, Mayer and Sinai (2003) showed that airline hub scheduling generated congestion

externalities, while Greenwood and Hanson (2015) found that shipping firms overinvested in fleet

capacity during booms, leading to predictably low returns. Finally, Ellison and Ellison (2009)

showed that online retailers engaged in obfuscation strategies that reduced price transparency

and increased search costs. Taken together, these studies suggest that while competition can

deliver important benefits in terms of innovation, variety, and lower prices, it can also lead to

over-competition that dissipates surplus through excessive entry, strategic waste, and congestion

externalities. When the benefits of rivalry outweigh the costs, policymakers might intensify

competition by leveraging the desire to win, for example, by creating public rankings among
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firms or awarding bonuses to top performers. Conversely, when the costs of over-competition

dominate, policymakers might limit competitive pressures by withholding ranking information or

providing financial support to lagging firms.

This paper makes several contributions. First, it provides a new explanation for a widely

observed phenomenon in industrial organization: over-competition and market volatility. Using a

desire to win framework, I show that the equilibrium under Cournot competition is no longer

stable and shifts to a mixed-strategy equilibrium, where the probability of overproduction (about

95 percent) is much larger than the probability of underproduction (about 5 percent), compared

to the benchmark with standard utility. Second, the paper studies a discontinuous utility function,

which is rarely examined in the literature. I show that when utility is discontinuous, pure-strategy

Nash equilibria typically do not exist, as players have strong incentives to deviate to capture

the discontinuous utility gain. I further characterize the mixed-strategy equilibrium in this

setting. Third, I provide empirical evidence of the desire to win using existing experimental data.

Although the experiments did not explicitly study the desire to win, I show that reinterpreting

them through my model reveals a statistically significant effect.

The remainder of the paper is organized as follows. Section 2 defines and demonstrates the

desire to win utility. Section 3 integrates this utility into the Cournot model and characterizes

the mixed-strategy equilibrium. Section 4 uses existing experiments to provide evidence on

the statistical significance of the desire to win parameter via structural estimation. Section 5

concludes.

2 Model of Desire to Win

To study how the desire to win shapes Nash equilibrium outcomes in competition, I formally

incorporate this motive into the utility function. I define the desire to win as the positive utility an

individual derives simply from earning a higher monetary payoff than their peers. I use monetary

payoff instead of utility to define winning status because payoffs are observable and have been

used in prior behavioral literature (e.g., Fehr and Schmidt, 1999). The desire to win concerns
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ordinal ranking rather than the magnitude of the difference. It represents a status-seeking or

competitive motive, in which utility is gained from outperforming another individual.

DEFINITION 1. Consider a set of n players indexed by i ∈ {1, . . . , n}, and let x = (x1, . . . , xn)

denote the vector of monetary payoffs. The utility function of player i motivated by a desire to

win is given by:

Ui(x) = xi +
1

n− 1

∑
j ̸=i

γij 1{xi>xj} −
1

n− 1

∑
j ̸=i

κij 1{xi<xj} (2.1)

where 1{xi>xj} equals 1 if player i’s payoff strictly exceeds player j’s payoff, and 0 otherwise. The

parameter γij ≥ 0 measures the strength of player i’s desire to win against player j, while κij ≥ 0

captures the reluctance to lose. I separate the two terms because it is plausible that the joy of

winning and the pain of losing differ in intensity. In addition, I assume players gain no utility if

the result is a tie.1 The subscript j allows for heterogeneity in these motives across opponents. A

larger γij indicates a more competitive individual, and if γij = κij = 0 for all j, player i behaves

as a standard, purely self-interested agent.

For simplicity, I will refer to the utility defined above as “DTW,” to the second term as

the desire to win component, and to the third term as the reluctance to lose component. The

normalization by n−1 ensures that the total potential utility from the desire to win is independent

of group size, making comparisons across different n meaningful, again in line with previous

literature (Fehr & Schmidt, 1999). This formulation captures the idea that utility consists of

one’s own monetary payoff, plus a bonus for each competitor one “beats,” and a penalty for each

competitor one loses to.

To characterize the properties of the desire to win, I first establish two conditions. I then

prove that under these conditions, no pure-strategy equilibrium exists. This result indicates
1It can be shown that this assumption does not reduce the generality of the model. Let the utility for a

tie be η. Ui(x) = xi +
1

n−1

∑
j ̸=i γij 1{xi>xj} − 1

n−1

∑
j ̸=i κij 1{xi<xj} +

1
n−1

∑
j ̸=i ηij 1{xi=xj} can be written as

Ui(x) = xi +
1

n−1

∑
j ̸=i(γij − ηij)1{xi>xj} − 1

n−1

∑
j ̸=i(κij − ηij)1{xi<xj}, which can be incorporated into the

model without explicitly modeling tie utility.
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that competition under the desire to win is generally unstable, explaining the observed market

volatility.

CONDITION 1 (Local Relative Responsiveness). For every player i and every (si, s−i)

with si ∈ Si (where si denotes player i’s strategy), for any xj , there exist sequences sni → si ∈ Si

such that the monetary payoff xi satisfies

xi(s
n
i , s−i)− xj(sj, s

n
i , s−i,j) > xi(si, s−i)− xj(sj, s−j)

When the payoff function is differentiable and S is open and connected, it is equivalent to

∂[xi(si, s−i)− xj(sj, s−j)]

∂si
̸= 0 for all i, j

Intuitively, the assumption requires that a player can always slightly adjust her action to improve

relative performance to any other player.

Condition 1 is plausible in real-world environments such as the Cournot setting when price

exceeds marginal cost. When a firm adjusts its decision marginally (price, quality, effort, capacity),

it improves its performance relative to competitors, which will be discussed in detail in the next

section. It should be noted that with only this assumption, a pure-strategy Nash equilibrium may

still exist: although a deviation can improve performance relative to rivals, it can also reduce the

deviator’s own profit (i.e., making rivals lose more while the deviator also incurs a loss).

CONDITION 2 (Closeness between top players). If no pure Nash equilibrium exists in

the standard utility, this condition is automatically met. If it exists, let s∗ denote a pure Nash

equilibrium without the desire to win component, and xi(s
∗
i , s

∗
−i) denotes player i’s monetary payoff.

For every profile s ∈ S and every player with the highest monetary payoff k ∈ argmaxj xj(s),

there exists some follower i ̸= k such that

T = {t ∈ Si|{xi(t, s
∗
−i)− xk(s

∗
−i, t) ≥ 0}} ≠ ∅ and sup

h∈T
xi(h, s

∗
−i)− xi(s

∗
i , s

∗
−i) < γi.
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Where γi is the desire to win parameter defined previously. Intuitively, the assumption requires

that at least one follower can (i) tie or overtake the current leader’s monetary payoff holding

others’ actions fixed and (ii) do so without suffering a huge loss.

Condition 2 depends on market structure. It holds when one follower’s feasible set and

technology allow them to match the leader’s realized profitability. In concentrated industries

with a dominant firm possessing insurmountable advantages, Condition 2 may fail because no

follower can reach the leader’s profit level. In some markets where top firms are close in scale or

efficiency, the condition is natural.

THEOREM 1 (Nonexistence of pure Nash equilibrium under desire to win). Let

N = {1, . . . , n}. For each player i ∈ N , let Si ⊂ R, and let S =
∏

i∈N Si. If (i) each Si is

nonempty, compact, and convex; (ii) each payoff function xi : S → R is continuous; (iii) γi > 0

for all i; and (iv) Conditions 1–2 hold, then the game (S, {Ui}i∈N ) does not have a pure-strategy

Nash equilibrium.

Proof: See Appendix A1

Theorem 1 shows that, under economically reasonable conditions, introducing a discrete

bonus for “being ahead” eliminates pure-strategy Nash equilibria, explaining market volatility,

since mixed strategies indicate randomized decisions. To intuitively understand this result, a

pure profile either features a tie at the top, at which point a tied leader can make an arbitrarily

small move to become the unique leader and gain a strictly positive rank bonus, or features a

unique leader, at which point some follower can at least tie and then slightly overtake the leader

to gain a strictly positive rank bonus. The resulting profitable deviations arise because the rank

component is discontinuous at ties, destabilizing the equilibrium.

It should be noted that although Condition 1 may be violated at some zero measure points,

for example, in Cournot competition when both firms produce at the level where price equals

cost (see the details in the next section), it still helps eliminate most of the support of the action
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set and allows verification of the point at which Condition 1 is violated.

To show the distinctive role of the desire to win motive, it is useful to compare it to

inequity-aversion as in Fehr and Schmidt (1999).

DEFINITION 2. Consider a set of n players indexed by i ∈ {1, . . . , n}, and let x = (x1, . . . , xn)

denote the vector of monetary payoffs. The utility function of player i motivated by

inequity-aversion is given by:

Ui(x) = xi − αi
1

n− 1

∑
j ̸=i

max{xj − xi, 0} − βi
1

n− 1

∑
j ̸=i

max{xi − xj, 0}, (2.2)

where αi ≥ βi ≥ 0 and βi < 1. Although both specifications involve comparisons of payoffs, they

differ fundamentally. The desire to win utility exhibits a discontinuous jump when one’s payoff

just exceeds another’s, whereas the inequity-aversion utility decreases continuously with the size

of any payoff difference.

Most importantly, inequity-aversion seeks to minimize payoff disparities, while the desire

to win seeks to maximize one’s ordinal rank. Consequently, the desire to win can destabilize

the original equilibrium and intensify competition, whereas inequity-aversion can stabilize the

equilibrium and reduce competitive intensity.

These motives need not be mutually exclusive. An individual may feel envy when behind,

guilt when far ahead, and joy from the status of being ahead. With all three motives, a player’s

emotional utility (beyond monetary payoff) could exhibit (i) a continuous rise as one approaches

a competitor when trailing, (ii) a discontinuous gain when one’s payoff just surpasses another’s,

and (iii) a decreasing return from larger leads due to guilt. Figure 1 illustrates how a player’s

emotional utility varies under envy, guilt, and the desire to win.

I formalize this by constructing a unified utility function that incorporates all three motives:

envy, guilt, and the desire to win.
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Figure 1: Illustration of emotional utility change

A player i’s utility can be expressed as:

Ui(x) = xi − αi
1

n− 1

∑
j ̸=i

max{xj − xi, 0}

− βi
1

n− 1

∑
j ̸=i

max{xi − xj, 0}

+
1

n− 1

∑
j ̸=i

γij 1{xi>xj} −
1

n− 1

∑
j ̸=i

κij 1{xi<xj}

(2.3)

(i) Purely Self-Interested: αi = βi = γij = κij = 0. The utility reduces to Ui(x) = xi.

(ii) Purely Competitive (Desire to Win only): αi = βi = 0, γij > 0, κij > 0. The player

cares only about their own payoff and the bonus from outperforming others, as in equation

(DTW).

(iii) Fair Minded (Inequity Averse only): γij = κij = 0, αi ≥ βi > 0. This is the classic

Fehr-Schmidt specification.

(iv) All Motives Present: γij > 0, κij > 0, αi > 0, βi > 0. When xi > xj, the player gains

from the desire to win (γij term) but loses utility from guilt (βi term), potentially favoring

a small winning margin.

All of the above specifications can be incorporated into the model. In the next section, I will

10



analyze how these motives affect the equilibrium. In summary, this section shows that the desire

to win preference destabilizes the standard Cournot equilibrium. With strong reluctance to lose,

even a small win motive drives firms to the Bertrand outcome, while weak reluctance to lose

eliminates pure-strategy equilibria and induces mixed strategies skewed toward overproduction.

When inequity-aversion is added, the discontinuous win motive dominates the continuous effects of

envy and guilt, reinforcing aggressive behavior. With different costs, small gaps induce instability

as high cost firms sacrifice profit to win, whereas large gaps restore the standard Cournot outcome,

since the high cost firm either cannot be the winner or cannot afford the cost of deviation from

the standard utility Cournot equilibrium.

3 Desire to Win in Cournot Competition

To illustrate how the desire to win motive reshapes equilibrium outcomes, I analyze a

two-player Cournot model under four utility specifications: standard profit maximization,

inequity-aversion (envy and guilt), desire to win (DTW), and a combination of DTW with

inequity-aversion. When both firms have identical constant marginal costs, the inequity-aversion

specification reproduces the classical Cournot equilibrium. Under the DTW specification, if each

firm’s reluctance to lose parameter is sufficiently large, it drives the outcome to the Bertrand

benchmark. Conversely, when the reluctance to lose is small, no pure-strategy Nash equilibrium

exists; instead, a mixed strategy equilibrium arises in which each firm chooses to overproduce

(exceed Cournot production) with probability approximately 95.06%, independent of parameter

values. Intuitively, when firms are motivated by a desire to win, they face uncertainty about

whether to exert full effort to outcompete the rival or yield. If both firms compete aggressively,

profits decline substantially; if both yield, either firm could profitably deviate by producing

more, thereby both winning and earning higher profits, which compels firms to randomize. The

intuition behind overproduction is that underproducing leads to both a penalty from losing and

lower profits, whereas overproducing increases the probability of winning and may yield higher

profits if the opponent happens to yield. When both DTW and inequity-aversion are present, the

equilibrium resembles that under DTW alone because the desire to win is a discontinuous utility,
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which renders the continuous part of the utility function of second-order importance "near ties".

3.1 Model Setup

Consider a Cournot duopoly with firms i ∈ {1, 2} producing a homogeneous good. Firm i

has constant marginal cost ci > 0. The inverse demand function is

P (Q) = a−Q, Q = q1 + q2, a > max{c1, c2}.

Hence, firm i’s profit is

πi(qi, qj) =
(
P (Q)− ci

)
qi = (a− qi − qj − ci) qi. (3.1)

I compare four utility specifications incorporating desire to win (DTW) and inequity-aversion

(IA):

(i) Standard: US
i = πi.

(ii) IA: U I
i = πi − αimax{πj − πi, 0} − βi max{πi − πj, 0}.

(iii) DTW: UD
i = πi + γi 1{πi>πj} − κi 1{πi<πj}.

(iv) Full model: UF
i = πi + γi 1{πi>πj} − κi 1{πi<πj} − αi max{πj − πi, 0} − βimax{πi − πj, 0}.

where γi, κi ≥ 0 and 1 > αi > βi ≥ 0.

3.2 When Marginal Costs Are the Same

(i) Standard Utility:

Under standard profit maximization, the Nash equilibrium is familiar and provides a useful

12



benchmark. Solving the first-order conditions yields

qS1 = qS2 =
a− c

3
, P S =

a+ 2c

3
, πS

1 = πS
2 =

(a− c)2

9
.

(ii) IA Only Utility:

PROPOSITION 1. Under the inequity-aversion specification, the Cournot competition

defined in (3.1), when marginal costs are the same, has the same Nash equilibrium as the

standard utility model.

Proof. See Appendix A2.

Conceptually, the classic Cournot outcome is already symmetric and stable, so there is

no incentive to deviate. Any deviation would not only result in a monetary loss, since

the benchmark equilibrium already maximizes profit, but would also generate disutility

from envy or guilt. Hence, incorporating inequity-aversion merely reinforces the existing

symmetry, and each firm maintains the same optimal output, which mitigates competition.

(iii) DTW Only Utility:

I characterize both pure-strategy and mixed-strategy Nash equilibria under the discontinuous

DTW utility.

Part A: pure-strategy Nash Equilibrium:

To establish this formally, it is necessary to derive explicit conditions under which a

pure-strategy equilibrium arises. Because the DTW utility is discontinuous, deriving best

response functions directly is difficult. I therefore examine symmetric and asymmetric

production scenarios, rule out the latter, and derive the symmetric equilibrium. Since

Condition 2 is satisfied (See Appendix A4), by applying Theorem 1 to the interval that

satisfies Condition 1, and verifying separately the point that violates Assumption 1.
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LEMMA 1. Under the desire to win utility in the Cournot setting (3.1), when costs are

the same, no asymmetric pure-strategy Nash equilibrium exists.

Proof. See Appendix A3.

This lemma is intuitively straightforward: any asymmetric output profile designates one

firm as the winner and the other as the loser. For such a profile to constitute an equilibrium,

neither the winner nor the loser should have an incentive to deviate. However, with identical

costs, once the winner and loser are determined, each firm optimizes only its monetary

payoff. This reduces the problem to the standard Cournot competition, in which both firms

produce the same output, thereby contradicting the possibility of asymmetry.

THEOREM 2. Under the desire to win utility in the Cournot setting (3.1), when the

marginal costs are the same, if the parameters κ and γ satisfy

κi, κj ≥
(a− c)2

16
, γi, γj > 0

Then the pure-strategy Nash equilibrium occurs where price equals marginal cost, matching

the Bertrand outcome. Otherwise, no pure-strategy equilibrium exists.

Proof. See Appendix A4.

Intuitively, when the desire to win exists (i.e., γ > 0), a firm will deviate from the benchmark

equilibrium to obtain the discontinuous utility gain γ at the cost of an infinitesimal monetary

loss. When the reluctance to lose parameter κ is large, no firm wants to yield because of the

severe penalty. At the same time, firms also prefer not to remain in a “tie,” since deviating

upward provides the additional discontinuous utility gain. However, when price equals

marginal cost, firms no longer have an incentive to produce slightly more: in this case,

increasing output generates negative profits, as price falls below cost, and the deviating firm

becomes the loser. Thus, producing more results in both a monetary loss and the penalty
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κ, eliminating the incentive to deviate. Likewise, no firm has an incentive to produce

less, given the large penalty from losing. Therefore, in this case, the only pure-strategy

equilibrium occurs when the price equals marginal cost.

When κ is small, firms still deviate from the benchmark equilibrium to secure the utility

gain γ. At some point, the monetary payoff from producing less outweighs the small

reluctance to lose penalty, and a firm deviates downward. Once one firm reduces output,

the other responds by also producing less but slightly more than its rival, thereby increasing

its monetary payoff while still capturing the desire to win utility γ. In this environment,

no pure-strategy Nash equilibrium can exist.

It is worth noting that the conditions for a pure-strategy equilibrium are extremely restrictive:

both firms’ reluctance to lose parameters would need to be very large, approximately half of

the Cournot profit, which is not realistic. This makes the study of mixed strategy equilibria

essential.

Part B: Mixed Strategy Nash Equilibrium:

Because the decision variable is continuous, the equilibrium must feature mixing according

to a distribution f(qi) that satisfies the equilibrium condition.

E
[
Ui(qi, f(qj))

]
=

∫ U

L

f(qj)Ui(qi, qj) dqj = C(θ), (3.2)

where C(θ) is a constant (a function of a, κ1, κ2, γ1, γ2) that does not depend on qi. Here,

L and U denote the lower and upper bounds of the support of the probability distribution,

respectively.

Without loss of generality, set c = 0. Solving equation (3.2) is equivalent to solving
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∫ qi

L

[
f(qj)

(
(a− qi − qj)qi + γi

)]
dqj +

∫ U

qi

[
f(qj)

(
(a− qi − qj)qi − κi

)]
dqj = C(θ).

Finding a closed-form expression for the full distribution is intractable; instead, I employ

a simulation-based approximation to determine the function form, then solve for the

parameter analytically. Using best response updating algorithms (see Appendix for details),

which converge to the true mixed strategy distribution (Perkins & Leslie, 2014), I find that

the equilibrium distribution is triangular.

f(qj) =
2

(U − L)2
(qj − L), qj ∈ [L,U ].

Solving (3.2) (details in Appendix B1) yields

(Li, Ui) =
(3a− 2

√
γi + κi

9
,
3a+ 7

√
γi + κi

9

)
.

When no pure-strategy equilibrium exists, firms randomize around the standard Cournot

output: approximately 95% (77/81) of the probability mass lies above the Cournot quantity,

while only about 5% (4/81) lies below it, irrespective of the desire to win parameter. It

should be noted that this result holds when γ and κ are not too large; otherwise, the lower

bound would be smaller than 0, which is infeasible.

To illustrate, let a = 100, c = 0, and κ1 = κ2 = γ1 = γ2 ∈ {18, 32, 50}. In these cases, the

desire to win and the reluctance to lose are the parameters correspond to only 1.6%, 2.9%,

and 4.5% of the standard Cournot profit, yet their impact on the equilibrium is substantial.

Figure 2 shows the mixed strategy distribution and its expected utility:

Thus, under desire to win preferences, aggregate output becomes unstable: firms are likely
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(a) Expected Utility (b) Distribution

Figure 2: Mixed strategy with desire to win equal to 1.6%, 2.9%, and 4.5% of profit

to overproduce, with a small chance of underproduction. A larger desire to win parameter

implies a wider possible range of production levels and a lower expected utility.

To build intuition, when a firm produces more, its probability of winning increases, and

it may further benefit if the opponent produces less. By contrast, producing less makes

winning unlikely and yields a low monetary payoff when the opponent produces more. Thus,

higher output is generally more attractive. However, a mixed-strategy equilibrium cannot

place all probability on overproduction: if both firms always produced high quantities,

aggregate output would rise and profits would fall, so neither firm would be willing to stay

at that level. Some probability of lower output must therefore be in the support for the

equilibrium to be sustainable.

(iv) DTW and IA Combined Utility

COROLLARY 1. When both the desire to win and inequity-aversion are present in the

Cournot setting (3.1), if the reluctance-to-lose parameters and envy are small, (a−c)2

16
αi+κi <

(a−c)2

16
for i = 1, 2, then the pure-strategy Nash equilibrium coincides with that under the

DTW-only utility. Otherwise, no pure-strategy equilibrium exists.

Proof. See Appendix A5.
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In this case, the desire to win motive dominates any inequity-aversion effects. Intuitively,

when envy and guilt are present, firms can still produce slightly more to obtain a discontinu-

ous utility gain at an infinitesimally small cost in terms of profit and guilt. Under envy and

guilt, it becomes even easier to sustain a pure-strategy Nash equilibrium at the Bertrand

level, because firms are more reluctant to yield. Yielding would impose a double penalty:

the loss itself and the disutility from envy. In other words, inequity-aversion reinforces the

effect of the desire to win motive.

3.3 When Marginal Costs Differ

Without loss of generality, assume 0 < c1 < c2 < a. To ensure both firms produce a positive

output, also require

a− 2c1 + c2 > 0 and a− 2c2 + c1 > 0.

(i) Standard Utility:

The standard profit maximization case is straightforward and serves as a benchmark.

Solving

q1 = BRS
1 (q2), q2 = BRS

2 (q1)

yields

qS1 =
a− 2c1 + c2

3
, qS2 =

a− 2c2 + c1
3

, (3.3)

So total output is

QS = qS1 + qS2 =
2a− c1 − c2

3
.

(ii) IA Only Utility:

PROPOSITION 2. Under inequity-aversion in the Cournot setting (3.1), the Nash equi-

librium shifts relative to the standard model. Moreover, if

4(1− β)(1 + α)− 1 > 0,

18



then, the lower-cost firm reduces its output, while the higher-cost firm increases its output,

compared to the standard equilibrium.

Proof. See Appendix A6.

Conceptually, the lower-cost firm, enjoying higher profits, experiences guilt and cuts back

on production, while the higher-cost firm, earning less profit, feels envy and expands output,

which shifts the equilibrium profile and mitigates competition.

(iii) DTW Only Utility:

When the marginal costs are different, the condition 2 (closeness between top players)

might be violated when the marginal cost differences are large. To find the pure-strategy

Nash equilibrium, I analyze two cases: (i) the outcome is a tie, πi = πj , and (ii) one firm is

the winner and the other is the loser, i.e., πi > πj or πi < πj. I first prove that no Nash

equilibrium exists when the outcome is a tie, and then I derive the condition under which a

pure-strategy Nash equilibrium exists.

LEMMA 2. In the Cournot setting (3.1) with desire to win preferences and different

marginal costs, no pure-strategy Nash equilibrium exists where the outcome is a tie.

Proof. See Appendix A7.

Intuitively, a tie with unequal costs requires the high-cost firm to increase output or the

low-cost firm to reduce just enough to equalize profits. Precisely at a tie, the low-cost

firm can always reclaim the lead with an arbitrarily small output increase: the discrete

win bonus outweighs the negligible profit change at the margin. Therefore, ties cannot be

sustained in pure strategies when costs differ.

THEOREM 3. In the Cournot setting (3.1) with desire to win preferences and different

marginal costs, no pure-strategy Nash equilibrium exists if and only if the following two

19



conditions hold:

a > −10c1 + 11c2 + 6
√
3 (c2 − c1) (a)

γ2 + κ2 >
1

36

(
3
√

(a− c2)2 − 4
9
(a− 2c1 + c2)(2a− c1 − c2)− (a− 2c1 + c2)

)2
(b)

Otherwise, the equilibrium coincides with that under standard profit maximization.

Proof. See Appendix A8.

To build intuition, condition (a) states that the higher cost firm can profitably deviate from

the benchmark (the standard Cournot equilibrium under conventional utility) to exceed

the lower cost firm’s profit. This condition is independent of the intensity of the desire

to win. When cost differences are large, the higher cost firm always loses. Condition (b)

states that the desire to win outweighs the profit loss from deviating from the benchmark.

Put differently, when cost differences are small or the desire to win is strong, the higher

cost firm is willing to accept a monetary sacrifice to secure the winner’s bonus, precluding

a pure-strategy equilibrium. If the cost gap is large, however, the lower cost firm always

wins, and the standard Cournot equilibrium remains the same as the benchmark.

The mixed strategy solution when costs differ is similar to the case where marginal costs

are the same. Simply solving the equation presented in (3.2) yields the mixed strategy

Nash equilibrium.

In summary, this section shows that the desire to win preference destabilizes the standard

Cournot equilibrium and pushes firms to overproduce. With strong reluctance to lose,

even a small win motive drives firms to the Bertrand outcome, while weak reluctance

to lose eliminates pure-strategy equilibria and induces mixed strategies skewed toward

overproduction. When inequity-aversion is added, the discontinuous win motive dominates

the continuous effects of envy and guilt, reinforcing aggressive behavior. With different

costs, small gaps induce instability as high cost firms sacrifice profit to win, whereas large

gaps restore the standard Cournot outcome, since the high cost firm either cannot be the
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winner or cannot afford the cost of deviation from the standard utility Cournot equilibrium.

4 Experimental Evidence

In this section, I draw on two existing experimental datasets Carpenter et al. (2010) and

Dal Bó and Fréchette (2011) to demonstrate that the psychological “desire to win” is statistically

significant. The first study provides clear evidence of a desire to win, but it cannot estimate its

coefficient directly since the only cost is moral cost, and it is not observable. The second study

allows estimation of that coefficient, but the estimation method is more complicated. From both

studies, I find that the desire to win is large and statistically significant.

4.1 Evidence from a Real Effort Tournament with Sabotage

4.1.1 Experimental Design

The first dataset is drawn from the real effort tournament experiment in Carpenter et al.

(2010). Although the study’s primary objective was to measure the impact of sabotage on effort,

its design also allows me to disentangle pecuniary incentives, emotional motivations, and the

pure desire to win.

Carpenter et al. (2010) implemented a real effort tournament with 224 student participants

across 28 sessions (8 participants per session). Each subject devoted 30 minutes to a computer

task that involved preparing form letters: printing, hand-addressing envelopes, stuffing them,

and placing them in an output box.

After the production phase, each participant and a designated supervisor independently

counted and quality-rated every peer’s output on a 0 to 1 scale. An independent USPS letter

carrier subsequently provided an objective deliverability rating. Finally, subjects completed a

survey capturing demographics, risk attitudes (on the Weber et al. scale), and beliefs about peers’

honesty in reporting.
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Treatment Payment rule

Piece Rate (P) receiving dollar amount equal to supervisor’s count ×

quality.

Tournament (T) Same as Piece Rate, plus a $25 bonus awarded to the

top performer.

Piece Rate & Sabotage

(P+S)

As in Piece Rate, but payment is based on the average

of supervisor and peer evaluations.

Tournament & Sabotage

(T+S)

As in Tournament, but quality-adjusted output is aver-

aged across supervisor and peer evaluations.

Even in treatments without a sabotage manipulation, participants were required to report

their peers’ counts and quality ratings; however, they were informed that these peer reports

would not affect their own payments.

It is important to note that sabotage itself does not have a monetary cost: underreporting

others’ output or quality has no negative effect on one’s own earnings. However, people may

incur a moral cost from sabotaging, since it resembles cheating (Carpenter et al., 2010).

4.1.2 Evidence of the Desire to Win

Table 1 presents the summary statistics for the tournament experiment. The average

sabotage in both output and quality is positive, indicating that participants tend to underreport

their peers’ performance. Here, quality sabotage is defined as the difference between the reported

quality and the postal officer’s objective rating: positive sabotage means the peer’s report is

lower than the officer’s rating, while negative sabotage means the peer’s report is higher than the

officer’s rating. Output sabotage is defined analogously.

Grouped summary statistics reveal that under tournament incentives, both output and

quality sabotage are positive, whereas in non-tournament treatments these measures are negative,

indicating overreporting of peers’ effort. This pattern reflects both monetary and psychological
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Table 1: Summary Statistics

Variable N Mean Std. Min Max

Output Sabotage 1561 0.36 2.03 -9.00 20.00
Quality Sabotage 1563 0.08 0.27 -0.60 1.00
True_output 1792 12.84 3.43 1.00 24.00
True_quality 1792 0.82 0.13 0.40 1.00
male 1792 0.47 0.50 0.00 1.00
GPA 1776 3.49 0.28 2.55 4.00
International_Student 1792 0.15 0.36 0.00 1.00
First_Born 1792 0.58 0.49 0.00 1.00
Num_Siblings 1792 1.51 1.11 0.00 7.00
Bathrooms_in_house 1792 3.02 1.44 0.00 9.00
Car_on_Campus 1792 0.39 0.49 0.00 1.00
Risk_Scale 1792 127.67 23.65 0.00 203.00

Tournament
Output Sabotage 385 0.11 1.41 -7.00 5.00
Quality Sabotage 387 0.10 0.24 -0.40 1.00

Tournament with Sabotage
Output Sabotage 392 1.50 3.35 -3.00 20.00
Quality Sabotage 392 0.26 0.32 -0.60 1.00

Piece Rate
Output Sabotage 392 -0.07 1.03 -9.00 7.00
Quality Sabotage 392 -0.03 0.18 -0.50 0.70

Piece Rate with Sabotage
Output Sabotage 392 -0.11 0.68 -3.00 3.00
Quality Sabotage 392 -0.02 0.20 -0.50 0.80

motivations to win.

In the Tournament & Sabotage treatment, sabotage is significantly larger than in the other

treatments. Notably, even in the pure Tournament treatment, where peer reports do not affect

payoffs, sabotage remains positive, suggesting a purely psychological desire to win in the absence

of additional monetary incentives.

Figure 3 shows the histogram of output and quality in the tournament setting. Both

distributions are left-skewed, meaning that most participants’ output and quality are concentrated
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(a) Histogram of true output (b) Histogram of true quality

Figure 3: Distribution of output and quality when tournament exists (T & T+S)

at the higher end of the distribution. Thus, competition among the top performers is more

intense (Carpenter et al., 2010).

4.1.3 Separating Desire to Win and inequity-aversion

While grouped statistics suggest the presence of a desire to win, they cannot rule out envy

(inequity-aversion) as an alternative explanation. To disentangle these motives, I estimate the

following OLS specification:

Sabotagei = β0 + β1Groupi + βControlsi + εi, (4.1)

where i indexes an individual rating (i.e., a subject’s rating of another group member). Sabotage

includes both output and quality sabotage measures. Group is a vector of treatment dummies

(Piece Rate, Tournament, Piece Rate+Sabotage, Tournament+Sabotage), and Controls include

demographic and baseline characteristics (e.g., gender, GPA).

I also estimate:

Sabotagei = β0 + β1 eff_output_rateri + βControlsi + εi, (4.2)
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where eff_output_rateri denotes the rater’s effective output (count × quality). Since the

distributions of output and quality are both left-skewed, competition among the top players is

more intense. Although sabotage increases the chance of winning for every player, top players

are affected to a greater extent than bottom players. Therefore, a positive β1 implies that higher

performing raters engage in more sabotage, consistent with the desire to win dominating envy,

whereas a negative β1 would indicate that envy (inequity-aversion) prevails.

Table 2: OLS Regression Results

Tournament T+S

(1) (2) (3) (4) (5) (6)
QSab OSab QSab OSab QSab OSab

Tournament 0.126∗∗∗ 0.196
(0.0177) (0.142)

Tournament_sabotage 0.296∗∗∗ 1.568∗∗∗
(0.0176) (0.140)

Piece_rate_sabotage 0.0190 -0.0430
(0.0180) (0.144)

eff_output_rater 0.0141∗∗ 0.138∗∗∗ 0.0274∗∗∗ 0.236∗∗∗
(0.00436) (0.0264) (0.00513) (0.0539)

Observations 1549 1547 380 378 392 392
Adjusted R2 0.191 0.112 0.045 0.060 0.117 0.106
Controls Yes Yes Yes Yes Yes Yes
Standard errors are robust and reported in parentheses; Qsab means quality sabotage; Osab means
output sabotage; eff_output_rater means the rater’s true quality times true quantity.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2 reports the OLS estimates. Columns (1) and (2) show that sabotage is highest in

the Tournament & Sabotage treatment. Importantly, even in the pure Tournament treatment,

where sabotage does not affect payoffs, participants underreport quality by 12.6%, significant at

the 1% level, indicating a psychological desire to win absent monetary stakes. The coefficient on

sabotage is insignificant for the Tournament only group; this is understandable because quality

is subjective, whereas count is objective, so the moral cost of sabotaging count is higher than

sabotaging quality (Carpenter et al., 2010).
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Columns (3) to (6) distinguish between the desire to win and inequity-aversion. Columns

(3) and (4) are Tournament only, and Columns (5) and (6) are Tournament & Sabotage. In

both treatments, the coefficient on eff_output_rater is positive and significant at the 1% level,

indicating that sabotage increases with the rater’s own output. This result contradicts envy and

guilt-based predictions2 and supports the hypothesis that the desire to win is the primary driver

of sabotage.

4.2 Evidence from repeated cooperation game experiment

4.2.1 Experiment Design

The second experiment by Dal Bó and Fréchette (2011) was a laboratory study of infinitely

repeated Prisoner’s Dilemma games. Because the game structure is straightforward, it provides a

suitable setting for testing the desire to win theory.

C D

C (R,R) (12, 50)
D (50, 12) (25, 25)

Table 3: Payoff matrix for experiment 2

In each round, participants simultaneously chose either cooperation or defection. The payoff

matrix in Table 3 is parameterized by R ∈ {32, 40, 48}. If both cooperated, each received R

experimental points; if one defected while the other cooperated, the defector received 50 points

and the cooperator 12 points; if both defected, each earned 25 points. Participants remained

matched with the same opponent until the game terminated probabilistically at the end of each

round with probability 1− δ. The continuation probability δ took values in {1/2, 3/4}, yielding

an expected interaction length of 1/(1 − δ). Both the payoff matrix and the value of δ were

common knowledge; participants knew that play continued probabilistically and did not know

the exact number of rounds in advance.
2Using envy-based predictions, top players are less likely to sabotage others, as they may feel guilt given that

they already earn more than bottom players. Conversely, bottom players are more likely to sabotage others out of
envy, since their payoffs are lower than those of others.
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A total of 266 undergraduate students from New York University participated in multiple

sessions, each accommodating 12 to 20 subjects. After each repeated interaction ended, subjects

were randomly re-matched for a new infinitely repeated Prisoner’s Dilemma. Each session

comprised 50 minutes of active play. Because the realized number of rounds per repeated game

varied stochastically, subjects experienced 23 to 77 repeated games per session, depending on δ

and the random draws. When δ = 1/2, the mean number of rounds per game was approximately

1.96 (maximum of nine); when δ = 3/4, it was approximately 4.42 (maximum of 23).

In each round, subjects observed their own and their opponent’s actions and payoffs, but

did not know the total number of rounds in advance. The experimenters recorded each subject’s

action (cooperate or defect), the opponent’s action, both players’ payoffs (in points), and the

outcome of the continuation draw. This round-by-round dataset enables reconstruction of the

entire sequence of choices and payoffs for each subject across all matches.

To allow for players who are not fully rational, I estimate the desire to win utility using the

discrete choice model of McFadden (1981), which is widely applied in experimental economics

(e.g., Arcidiacono and Miller, 2011, Abaluck and Gruber, 2011):

P(Action C) =
eλE[U(C)]

eλE[U(C)] + eλE[U(D)]
.

Since players do not observe their opponent’s action before making a choice, I cannot directly

compute E[U(C)] and E[U(D)]. Instead, I follow two approaches from the literature to estimate

these expected utilities.

The first approach uses observed data to estimate the probability of opponent cooperation,

following Costa-Gomes et al. (2001). A drawback is that players do not see others’ actions

before play, so initial beliefs about cooperation probabilities are uninformed. However, given the

large number of matches, after several rounds, players can form a reasonable estimate of their

opponent’s cooperation probability.

The second approach employs the Quantal Response Equilibrium (QRE) framework of
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McKelvey and Palfrey (1995), which has been widely applied in estimating behavioral parameters

(e.g., Hoppe and Schmitz, 2013):

P(Action C) =
eλE[U(C|P)]

eλE[U(C|P)] + eλE[U(D|P)] .

Because this is an infinitely repeated game with probabilistic termination and decisions

affecting future payoffs, to compute the expected utilities, it is necessary to restrict the strategy

sets. In their experiment, 85.6% of matches3 use either the always defect strategy or the grim

trigger strategy. Therefore, I assume that each player randomly chooses between these two

strategies,4 and I calculate utility under two assumed strategies: grim trigger and always defect.

Since decisions after the first round are history dependent and thereby confound parameter

identification, I include only the first round in the estimation. I estimate the desire to win

parameter using maximum likelihood estimation (MLE).

Since the first round outcome under the grim trigger is cooperation, let UC denote the grim

trigger utility, UD the always defect utility, δ the discount factor, and p the probability that the

opponent adopts a grim trigger strategy. The probability p is obtained either directly from the

data or via QRE.5

Next, for four utility models: standard utility, inequity-aversion only utility, desire to win only

utility, and desire to win combined with inequity-aversion utility, I compute the corresponding

expected utilities. To avoid multicollinearity, I include only the parameter γ for desire to win

and α for inequity-aversion, since guilt-related parameters are typically weak or insignificant in
3Calculated at the match player level: with two players per match, if only one always adopts defect (or grim

trigger), the match counts as 50%, and if both do, it counts as 100%. Thus, 85.6% means that 85.6 out of 100
match players (from 50 matches) used one of these strategies.

4Different individuals have different probabilities of choosing grim trigger versus always defect because they
differ in their levels of desire to win, envy, and guilt.

5For QRE estimates, see Appendix C.
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empirical studies (e.g., Engelmann and Strobel, 2006).

Grim trigger: E(UC) = p

∞∑
t=0

δt uCC + (1− p)
[
uCD +

∞∑
t=1

δt uDD

]
= p

r

1− δ
+ (1− p)

[
(12− 38α) +

δ · 25
1− δ

]
.

Always defect: E(UD) = p
[
uDC +

∞∑
t=1

δt uDD

]
+ (1− p)

∞∑
t=0

δt uDD

= p
[
(50 + γ) +

δ · 25
1− δ

]
+ (1− p)

25

1− δ
.

Under these specifications, the probability that i cooperates is

Pi(θ) =
exp

(
λUC

i

)
exp

(
λUC

i

)
+ exp

(
λUD

i

) ,
where θ = (γ, κ, α, β, λ). The joint likelihood across all observations is

L(θ) =
N∏
i=1

Pi(θ)
ai
[
1− Pi(θ)

] 1−ai ,

where ai denotes the cooperation indicator.

The maximum likelihood estimator is then

θ̂ = argmax
θ

L(θ).

Table 4 reports the MLE estimates using the group mean as the perceived probability of

opponent cooperation. All parameters of interest are significant at the 1% level. Under the

inequity-aversion–only specification, α is 0.36, consistent with existing literature (e.g. Charness

and Rabin (2002)). Under the desire to win specification, γ is large in magnitude (5.560),

exceeding 10% of the expected payoff, showing a substantial competitive motive. In the full

model, γ remains large (3.829), demonstrating that the desire to win effect remains quantitatively
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Table 4: MLE Estimates of Utility Parameters by Group Mean (N = 13,888)

Model Restrictions λ α γ LL
Standard α = γ = 0 0.070∗∗∗ — — -8082.50

(8.92)
IA (α) γ = 0 0.042∗∗∗ 0.360∗∗∗ — -7409.21

(9.27) (12.39)
DTW (γ) α = 0 0.084∗∗∗ — 5.560∗∗∗ -7454.69

(11.31) (7.93)
Full (α, γ) none 0.080∗∗∗ 0.244∗∗∗ 3.829∗∗ -7157.60

(10.78) (5.08) (2.81)

Notes: t-statistics in parentheses. LL is the likelihood function, λ is the
rationality parameter in the discrete choice model ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05.

important even after controlling for inequity-aversion.

5 Conclusion

The desire to win framework helps explain the phenomenon of over-competition and market
volatility. When firms derive utility from outperforming rivals, the standard Cournot equilib-
rium can become unstable. With similar marginal costs, the pure-strategy Nash equilibrium
disappears, and firms adopt mixed strategies that lead to aggressive overproduction. Although
inequity-aversion preferences alone tend to soften competition, their effect is dominated once the
discontinuous desire to win motive is introduced. The desire to win is both psychologically plau-
sible and empirically relevant, as shown by experimental evidence from real-effort tournaments
with sabotage and repeated Prisoner’s Dilemma games. Since over-competition can generate
both benefits and costs for welfare, understanding how desire to win motives operate may guide
policymakers in designing interventions that either mitigate or harness such motives to improve
market outcomes.
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Appendix A: Proofs

A1 Proof of Theorem 1

Statement: For each player i ∈ {1, . . . , n} let Si ⊂ R be nonempty, compact, and convex. Let

S =
∏

i Si. Monetary payoffs xi : S → R are continuous. If all players have a strict positive

desire to win γi > 0 and conditions 1 and 2 (C1, C2) hold, then the game (S, {Ui}) admits no

pure-strategy Nash equilibrium.

Proof. Assume toward a contradiction that s∗ ∈ S is a pure-strategy Nash equilibrium in utilities

U .

Case 1: A tie at the top.

Suppose there are distinct i, j with xi(s
∗) = xj(s

∗) = maxk xk(s
∗). Pick a tied player, w.l.o.g.

i, with s∗i ∈ Si. By C1, local Relative Responsiveness, choose s′i arbitrarily close to s∗i with

xi(s
′
i, s

∗
−i) − xj(s

∗
j , s

∗
−j) > xi(s

∗
i , s

∗
−i) − xj(s

∗
j , s

∗
−j) = 0 , so i becomes strictly top in x. By

continuity, for any ε, there exists s′i such that |xi(s
′
i, s

∗
−i) − xi(s

∗)| < |ε|. Hence, there exist s′i

such that:

Ui(s
′
i, s

∗
−i)− Ui(s

∗) = xi(s
′
i, s

∗
−i)− xi(s

∗)︸ ︷︷ ︸
>−|ε|

+γi > 0,

a profitable deviation, contradiction.

Case 2: A unique leader.

Let s∗ ∈ S be the candidate pure profile and suppose k is the unique maximizer of the

monetary-payoff vector at s∗, so xk(s
∗) > xj(s

∗) for all j ̸= k. By the C2, closeness of top player,

there exists a follower i ̸= k and a nonempty set

T =
{
t ∈ Si : xi(t, s

∗
−i)− xk(s

∗) ≥ 0
}
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such that suph∈T
(
xi(h, s

∗
−i)− xi(s

∗
i , s

∗
−i)

)
< γi. Since T ≠ ∅ and Si is compact, choose ti ∈ T

that attains the supremum on T .

(i) Strict overtake. If xi(ti, s
∗
−i) > xk(s

∗), then by deviating to ti, player i becomes the unique

monetary leader. Because no other player’s monetary payoff decreases when i moves (we hold

opponents’ actions fixed), i incurs no additional loss-indicator penalties, and she gains the rank

bonus associated with being strictly ahead. Hence

Ui(ti, s
∗
−i)− Ui(s

∗) ≥
[
xi(ti, s

∗
−i)− xi(s

∗)
]
+ γ̄i > 0,

thus i has a profitable deviation.

(ii) Tie with the leader. If xi(ti, s
∗
−i) = xk(s

∗), then ti ties i with the leader in monetary payoff.

If ti ∈ Si, Local relative responsiveness guarantees the existence of a nearby t′i ∈ Si with

xi(t
′
i, s

∗
−i) > xk(s

∗). By taking t′i arbitrarily close to ti, other players’ monetary payoffs remain

unchanged, and the argument in (i) applies: i can strictly overtake and secure a profitable

deviation.

Both cases are impossible, hence no pure-strategy Nash equilibrium exists. ■

A2 Proof of Proposition 1

Statement : Under the inequity-aversion specification, the Cournot competition defined in (3.1)

has the same Nash equilibrium as the standard utility model.

Proof: First, I show that no asymmetric equilibrium can arise.

Without loss of generality, suppose π1 > π2.
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The first-order conditions are

∂U I
1

∂q1
= (1− β1) (a− 2q1 − q2 − c1)− β1 q2 = 0,

∂U I
2

∂q2
= (1 + α2) (a− q1 − 2q2 − c2) + α2 q1 = 0,

which yield the best response functions:

BRI
1(q2) =

(1− β1)(a− c1)− q2
2(1− β1)

,

BRI
2(q1) =

(1 + α2)(a− c2)− q1
2(1 + α2)

.

Solving the fixed point yields:

qI1 =
2(1− β1)(1 + α2)(a− c)− (1 + α2)(a− c)

4(1− β1)(1 + α2)− 1
,

qI2 =
2(1− β1)(1 + α2)(a− c)− (1− β1)(a− c)

4(1− β1)(1 + α2)− 1
.

If 4(1− β1)(1 + α2)− 1 ≤ 0, the output is negative or infinite, which is impossible; hence the

assumption is invalid. If 4(1 − β1)(1 + α2) − 1 >= 0, then qI1 < qI2 and p > c, hence π1 < π2,

contradicting the assumption π1 > π2.

Hence, the equilibrium must be symmetric, implying πi = πj, which contradicts the assumption.

Therefore, no pure-strategy Nash equilibrium exists with asymmetric outputs.

Next, I show that the symmetric outcome qi = qj =
a−c
3

is the unique Nash equilibrium. At the

symmetric point, each firm’s utility reduces to the standard profit function, which has a unique

maximizer:

qI1 = qI2 =
a− c

3
.

Any deviation from this quantity reduces both monetary profit (since this is the optimal output

in the standard model) and, by creating a profit difference, reduces the inequity-aversion utility.
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Thus, there are no profitable deviations.

Therefore, the unique Nash equilibrium under inequity-aversion coincides with the standard

Cournot equilibrium. ■

A3 Proof of Lemma 1

Statement : Under the desire to win utility in the Cournot setting (3.1), when costs are identical,

no asymmetric pure-strategy Nash equilibrium exists.

Proof: Toward a contradiction, without loss of generality, suppose q1 > q2.

Case 1: p > c, price higher than the marginal cost. Then π1 > π2, firm 1 “wins,” and firm 2

“loses.” Each firm’s best response thus maximizes monetary profit alone (the win/lose status is

fixed). However, in the standard Cournot model with identical costs, the unique equilibrium is

symmetric, contradicting q1 > q2.

Case 2: p = c, price equal to the marginal cost. The two firms’ profits are equal, π1 = π2 = 0.

By continuity, there exists ε > 0 such that q1 − ε > q2. Under the new quantity, price is higher

than the marginal cost; firm 1 gains positive profit and π′
1 > π′

2, implying a profitable deviation.

Case 3: p < c, price lower than the marginal cost. Then π1 < π2 < 0, firm 1 “loses,” and firm

2 “wins.” By continuity, there exists ε > 0 such that q1 − ε > q2, and the price remains below

marginal cost. The winning status does not change, while firm 1 strictly increases its profit, a

profitable deviation.

Since none of these cases is possible, no asymmetric pure-strategy Nash equilibrium exists. ■
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A4 Proof of Theorem 2

Statement : Under the desire to win utility in the Cournot setting (3.1), when marginal costs are

identical, if the parameters κ and γ satisfy

κi, κj ≥
(a− c)2

16
, γi, γj > 0,

then the pure-strategy Nash equilibrium occurs where price equals marginal cost. Otherwise, no

pure-strategy equilibrium exists.

Proof: By Lemma 1, the only possible Nash equilibrium occurs when q1 = q2. Next, we check the

two conditions of Theorem 1.

For C1 (local relative responsiveness), take the difference between the two firms:

∆(q1, q2) = π1(q1, q2)− π2(q1, q2).

∂∆(q1, q2)

∂q1
=

∂p

∂q1
q1 + p− c− ∂p

∂q1
q2 = a− c− 2(q1 + q2)

Since q1 = q2, the only case where C1 is violated (∂∆(q1,q2)
∂q1

= 0) is when q1 = q2 =
a−c
2

, p = c.

For C2 (closeness between top players), the profits are the same under the Nash equilibrium

without the desire to win component. By applying Theorem 1, there is no pure-strategy Nash

equilibrium when p ̸= c.

To check whether a Nash equilibrium exists when p = c, in this case q1 = q2 =
a−c
2

. Without loss

of generality, consider whether firm 1 has an incentive to deviate. Clearly, if firm 1 increases its

output, it will incur negative profit; meanwhile, since π1 < π2, firm 1 will suffer an additional

loss of κ1. Hence, there is no profitable deviation from increasing output. When firm 1 decreases

output, q′1 < q1, the price will be higher than the marginal cost. Since firm 1’s output is now

lower than firm 2’s, it will incur a loss of reluctance-to-lose κ1. To maximize monetary profit,
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q′1 =
a−c
4

, yielding π = (a−c)2

16
.

Therefore, the only pure-strategy equilibrium is

(
(a− c)/2, (a− c)/2

)
,

and it exists if and only if

κ1, κ2 ≥
(a− c)2

16
.

Otherwise, no pure-strategy equilibrium exists. ■

A5 Proof of Corollary 1

Statement : When both desire to win and inequity-aversion are present in the Cournot setting

(3.1), if the reluctance-to-lose parameters and envy are small, (a−c)2

16
αi + κi <

(a−c)2

16
for i = 1, 2,

the pure-strategy Nash equilibrium coincides with that under DTW-only utility. Otherwise, no

pure-strategy equilibrium exists.

Proof: By analogy, it is easy to verify that condition C1 is violated only when q1 = q2 =
a−c
2

, and

C2 is still satisfied. By applying Theorem 1, there is no pure-strategy Nash equilibrium when

p ̸= c.

To check the case when p = c, similarly, if firm 1 increases its output, it will incur negative profit;

meanwhile, since π1 < π2, firm 1 will suffer an additional loss of κ1. Hence, there is no profitable

deviation from increasing output. When firm 1 decreases output, q′1 < q1, the price will be higher

than the marginal cost. Since firm 1’s output is now lower than firm 2’s, it will incur a loss of

reluctance-to-lose κ1 and a loss from envy. To maximize monetary profit, q′1 = a−c
4

, yielding

π = (a−c)2

16
.

Therefore, the only pure-strategy equilibrium is

(
(a− c)/2, (a− c)/2

)
,
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and it exists if and only if

(a− c)2

16
αi + κi <

(a− c)2

16
for i = 1, 2.

Otherwise, no pure-strategy equilibrium exists.

■

A6 Proof of Proposition 2

Statement : Under inequity-aversion in the Cournot setting (3.1), the Nash equilibrium shifts

relative to the standard model. Moreover, if

4(1− β)(1 + α)− 1 > 0,

Then the lower-cost firm reduces its output while the higher-cost firm increases its output

compared to the standard equilibrium.

Proof: First, suppose π1 ≥ π2. I will then discuss the case π1 < π2.

When the lower-cost firm earns at least as much profit as the higher-cost firm, its utility becomes

U I
i = (1− βi)πi + βi πj.

The first-order conditions are

∂U I
1

∂q1
= (1− β1) (a− 2q1 − q2 − c1)− β1 q2 = 0,

∂U I
2

∂q2
= (1 + α2) (a− q1 − 2q2 − c2) + α2 q1 = 0,
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which yield the best response functions

BRI
1(q2) =

(1− β1)(a− c1)− q2
2(1− β1)

,

BRI
2(q1) =

(1 + α2)(a− c2)− q1
2(1 + α2)

.

Solving for the fixed point gives

qI1 =
2(1− β1)(1 + α2)(a− c1)− (1 + α2)(a− c2)

4(1− β1)(1 + α2)− 1
,

qI2 =
2(1 + α2)(1− β1)(a− c2)− (1− β1)(a− c1)

4(1 + α2)(1− β1)− 1
.

Under this quantity, π1 > π2.

Now consider the case π1 < π2. Using a similar argument, compute the quantity and profit, and

find that π1 > π2, contradicting the assumption π1 < π2. Therefore, the profit of firm 1 is always

higher than that of firm 2.

Next, compare this with the standard Cournot equilibrium qSi =
a−2ci+cj

3
. Under the assumptions

0 < c1 < c2 < a, 0 ≤ β1 < α2 < 1, 4(1− β1)(1 + α2)− 1 > 0,

and

a− 2c1 + c2 > 0, a+ c1 − 2c2 > 0,

let ∆ = qS1 − qI1 . Since both denominators are positive, let the multiplication of denominators be

C:

C = 3
(
4(1− β1)(1 + α2)− 1

)
,

and compute

C∆ = (a− 2c1 + c2)
(
4(1− β1)(1 + α2)− 1

)
− 3(1 + α2)

(
2(1− β1)(a− c1)− (a− c2)

)
,
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which simplifies to

C∆ = α2 (a− 2c1 + c2) + 2(1 + α2) β1 (a+ c1 − 2c2).

All terms on the right are nonnegative, with at least one strictly positive, so ∆ > 0. Hence

qI1 ≤ a− 2c1 + c2
3

= qS1 ,

and by an analogous argument

qI2 ≥ a− 2c2 + c1
3

= qS2 .

■

A7 Proof of Lemma 2

Statement : In the Cournot setting (3.1) with desire to win preferences and different marginal

costs, no pure-strategy Nash equilibrium exists if the outcome is a tie.

Proof: Suppose, toward a contradiction, that a tie π1 = π2 > 0 occurs in equilibrium. Define

D = π1 − π2 = (a− q1 − q2 − c1) q1 − (a− q1 − q2 − c2) q2.

Let (q∗1, q
∗
2) satisfy D = 0, i.e.

(a− q∗1 − q∗2 − c1) q
∗
1 = (a− q∗1 − q∗2 − c2) q

∗
2. (a)

A necessary condition for no profitable deviation by firm 1 is that the derivative of D with respect

to q1 is zero; otherwise, firm 1 could produce slightly more or slightly less to gain γ1 with an

arbitrarily small loss.
∂D

∂q1

∣∣∣∣
q∗1

= a− c1 − 2q∗1 = 0 =⇒ q∗1 =
a− c1

2
.
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Similarly, for firm 2 we require q∗2 = a−c2
2

. Substituting into (a) gives

(a− c1)
2 = (a− c2)

2,

contradicting c1 < c2.

Therefore, no pure-strategy equilibrium can involve a tie.

For π1 = π2 < 0, by the same method, it also leads to a contradiction.

For π1 = π2 = 0, this is impossible: if firm 1 has zero profit, then p = c1 and p = c2, but c1 ̸= c2,

a contradiction. ■

A8 Proof of Theorem 3

Statement : In the Cournot setting (3.1) with desire-to-win preferences and different marginal

costs, no pure-strategy Nash equilibrium exists if both conditions hold:

a > −10c1 + 11c2 + 6
√
3 (c2 − c1), (a)

γ2 + κ2 >
1

36

(
3
√

(a− c2)2 − 4
9
(a− 2c1 + c2)(2a− c1 − c2)− (a− 2c1 + c2)

)2
. (b)

Otherwise, the equilibrium coincides with that under standard profit maximization.

Proof: By Lemma 2, no equilibrium can be a tie. In equilibrium, firms maximize their profits

without considering the desire to win or the reluctance to lose. Hence, the only possible equilibrium

is:

qD1 =
a− 2c1 + c2

3
, qD2 =

a− 2c2 + c1
3

.

Firm 1, having maximized profit and won, has no incentive to deviate. I need to check whether

firm 2 has any profitable deviation.
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First, check whether firm 2 can increase its profit above firm 1’s when q1 =
a−2c1+c2

3
. Let

D(q2) = π1 − π2 = q22 − (a− c2) q2 +
(a− 2c1 + c2)(2a− c1 − c2)

9
.

Solving D(q2) = 0 for q2 and imposing π2 > 0 yields the necessary condition for firm 2 to have

an incentive to deviate:

a > −10c1 + 11c2 + 6
√
3 (c2 − c1).

Second, ensure that any deviation yielding π2 = π1 fails to increase firm 2’s total utility. Writing

π∗
2 for firm 2’s profit in the standard equilibrium and π2(D = 0) for its profit at the tie, I require

γ2 + κ2 > π∗
2 − π2(D = 0).

Hence, the second necessary condition for firm 2 to have an incentive to deviate is

γ2 + κ2 >
1

36

(
3
√

(a− c2)2 − 4
9
(a− 2c1 + c2)(2a− c1 − c2)− (a− 2c1 + c2)

)2
.

If either condition fails, firm 2 cannot profitably deviate, and the unique pure-strategy equilib-

rium coincides with the standard Cournot outcome. If both conditions hold, no pure-strategy

equilibrium exists. When either condition is violated, neither firm has the incentive or ability to

deviate from the Nash equilibrium under the standard utility function.

■
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Appendix B: Finding Mixed Strategy

B1 Steps to Finding the Theoretical Distribution

First, compute the integral and require that the following expression be constant:

E(qi) = −A3

6
qi +

A2a

2
qi +

A2γ

2
− A2

2
q2i +

AB2

2
qi − AB a qi + AB κ+ AB q2i

− Aγ qi − Aκ qi −
B3

3
qi +

B2a

2
qi −

B2κ

2
− B2

2
q2i +

γ

2
q2i +

κ

2
q2i .

Next, collect terms by powers of qi:

1. Coefficient of q2i :

C2 = −A2

2
+ AB − B2

2
+

γ

2
+

κ

2
=

−(A−B)2 + (γ + κ)

2
.

2. Coefficient of qi:

C1 = −A3

6
+

A2a

2
+

AB2

2
− AB a− Aγ − Aκ− B3

3
+

B2a

2
.

3. Constant term:

C0 =
A2γ

2
+ AB κ− B2κ

2
.

Hence

E(qi) = C2 q
2
i + C1 qi + C0,

and I solve the system

C2 = 0, C1 = 0.

1. From C2 = 0:

−(A−B)2 + (γ + κ) = 0 =⇒ (A−B)2 = γ + κ.
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Set s =
√
γ + κ. Since B is the upper bound, take B = A+ s.

2. From C1 = 0, substitute B = A± s and solve for A. One obtains

−9A+ 3a± 2s = 0 =⇒ A =
3a− 2s

9
(
3a+ 2s

9
ruled out)

Then

B = A+ s =
3a− 2s

9
+ s =

3a− 2s+ 9s

9
=

3a+ 7s

9
,

which yields the solution.

Substituting back s =
√
γ + κ, the solutions are

(A,B) =
(

3a−2
√
γ+κ

9
, 3a+7

√
γ+κ

9

)

B2 Finding the Distribution by Simulation

To approximate the mixed strategy distribution, I use the following steps:

1. Choose an initial support [0, 50] since a = 100.

2. Discretize this interval with step size 0.05, yielding 1000 points.

3. Initialize the probability distribution uniformly over these points.

4. At each iteration, compute each action’s expected utility, identify the best response, increase

its probability by a small increment (e.g. 0.1%), and renormalize the distribution.

5. Repeat step 4 for 10,000 iterations.

6. Plot a histogram of the best response choices.

To improve efficiency, after a few initial iterations, I remove actions with the lowest expected

utility, provided every remaining action has been a best response at least once.
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Figure 4 shows the resulting simulated density of the mixed strategy Nash equilibrium.

Figure 4: Simulated density of the mixed strategy equilibrium

Appendix C: Robustness Check for Experimental Data Esti-

mation

Table 5: MLE Estimates of Utility Parameters by Quantal Response Equilibrium (N = 13,888)

Model Restrictions λ α γ LL
Standard α = γ = 0 0.067∗∗∗ — — -8209.59

(9.88)
IA (α) γ = 0 0.062∗∗∗ 0.262∗∗∗ — -7343.37

(10.09) (7.52)
DTW (γ) α = 0 0.088∗∗∗ — 4.723∗∗∗ -7534.69

(13.21) (8.87)
Full (α, γ) none 0.093∗∗∗ 0.287∗∗∗ 2.873∗ -6964.79

(9.93) (5.26) (2.30)

Notes: t-statistics in parentheses. LL is the likelihood function, λ is the
rationality parameter in the discrete choice model ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05.
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